Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 12(1): 30, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649956

RESUMO

BACKGROUND: Glucocorticoids are often associated with stressful environments, but they are also thought to drive the best strategies to improve fitness in stressful environments. Glucocorticoids improve fitness in part by regulating foraging behaviours in response to daily and seasonal energy requirements. However, many studies demonstrating relationships between foraging behaviour and glucocorticoids are experimental, and few observational studies conducted under natural conditions have tested whether changing glucocorticoid levels are related to daily and seasonal changes in energy requirements. METHODS: We integrated glucocorticoids into habitat selection models to test for relationships between foraging behaviour and glucocorticoid levels in elk (Cervus canadensis) as their daily and seasonal energy requirements changed. Using integrated step selection analysis, we tested whether elevated glucocorticoid levels were related to foraging habitat selection on a daily scale and whether that relationship became stronger during lactation, one of the greatest seasonal periods of energy requirement for female mammals. RESULTS: We found stronger selection of foraging habitat by female elk with elevated glucocorticoids (eß = 1.44 95% CI 1.01, 2.04). We found no difference in overall glucocorticoid levels after calving, nor a significant change in the relationship between glucocorticoids and foraging habitat selection at the time of calving. However, we found a gradual increase in the relationship between glucocorticoids and habitat selection by female elk as their calves grew over the next few months (eß = 1.01, 95% CI 1.00, 1.02), suggesting a potentially stronger physiological effect of glucocorticoids for elk with increasing energy requirements. CONCLUSIONS: We suggest glucocorticoid-integrated habitat selection models demonstrate the role of glucocorticoids in regulating foraging responses to daily and seasonal energy requirements. Ultimately, this integration will help elucidate the implications of elevated glucocorticoids under natural conditions.

2.
Oecologia ; 202(4): 685-697, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515598

RESUMO

Avoiding death affects biological processes, including behavior. Habitat selection, movement, and sociality are highly flexible behaviors that influence the mortality risks and subsequent fitness of individuals. In the Anthropocene, animals are experiencing increased risks from direct human causes and increased spread of infectious diseases. Using integrated step selection analysis, we tested how the habitat selection, movement, and social behaviors of gray wolves vary in the two months prior to death due to humans (being shot or trapped) or canine distemper virus (CDV). We further tested how those behaviors vary as a prelude to death. We studied populations of wolves that occurred under two different management schemes: a national park managed for conservation and a provincially managed multi-use area. Behaviors that changed prior to death were strongly related to how an animal eventually died. Wolves killed by humans moved slower than wolves that survived and selected to be nearer roads closer in time to their death. Wolves that died due to CDV moved progressively slower as they neared death and reduced their avoidance of wet habitats. All animals, regardless of dying or living, maintained selection to be near packmates across time, which seemingly contributed to disease dynamics in the packs infected with CDV. There were no noticeable differences in behavior between the two management areas. Overall, habitat selection, movement, and sociality interact to put individuals and groups at greater risks, influencing their cause-specific mortality.

3.
Curr Zool ; 69(2): 225, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091995

RESUMO

[This corrects the article DOI: 10.1093/cz/zoaa052.].

4.
J Anim Ecol ; 92(5): 1042-1054, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871141

RESUMO

In seasonal environments, animals should be adapted to match important life-history traits to when environmental conditions are optimal. Most animal populations therefore reproduce when resource abundance is highest to increase annual reproductive success. When facing variable, and changing, environments animals can display behavioural plasticity to acclimate to changing conditions. Behaviours can further be repeatable. For example, timing of behaviours and life history traits such as timing of reproduction may indicate phenotypic variation. Such variation may buffer animal populations against the consequences of variation and change. Our goal was to quantify plasticity and repeatability in migration and parturition timing in response to timing of snowmelt and green-up in a migratory herbivore (caribou, Rangifer tarandus, n = 132 ID-years) and their effect on reproductive success. We used behavioural reaction norms to quantify repeatability in timing of migration and timing of parturition in caribou and their plasticity to timing of spring events, while also quantifying phenotypic covariance between behavioural and life-history traits. Timing of migration for individual caribou was positively correlated with timing of snowmelt. The timing of parturition for individual caribou varied as a function of inter-annual variation in timing of snowmelt and green-up. Repeatability for migration timing was moderate, but low for timing of parturition. Plasticity did not affect reproductive success. We also did not detect any evidence of phenotypic covariance among any traits examined-timing of migration was not correlated with timing of parturition, and neither was there a correlation in the plasticity of these traits. Repeatability in migration timing suggests the possibility that the timing of migration in migratory herbivores could evolve if the repeatability detected in this study has a genetic or otherwise heritable basis, but observed plasticity may obviate the need for an evolutionary response. Our results also suggest that observed shifts in caribou parturition timing are due to plasticity as opposed to an evolutionary response to changing conditions. While this provides some evidence that populations may be buffered from the consequences of climate change via plasticity, a lack of repeatability in parturition timing could impede adaptation as warming increases.


Assuntos
Rena , Feminino , Gravidez , Animais , Rena/fisiologia , Estações do Ano , Reprodução , Parto , Ecossistema , Migração Animal
5.
Biol Rev Camb Philos Soc ; 98(3): 868-886, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36691262

RESUMO

Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.


Assuntos
Ecologia , Ecossistema , Animais , Comportamento Social , Comportamento Espacial , Fenótipo , Evolução Biológica
6.
Ecology ; 104(2): e3882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208219

RESUMO

Climate warming is causing asynchronies between animal phenology and environments. Mismatched traits, such as coat color change mismatched with snow, can decrease survival. However, coat change does not serve a singular adaptive benefit of camouflage, and alternate coat change functions may confer advantages that supersede mismatch costs. We found that mismatch reduced, rather than increased, autumn mortality risk of snowshoe hares in Yukon by 86.5% when mismatch occurred. We suggest that the increased coat insulation and lower metabolic rates of winter-acclimatized hares confer energetic advantages to white mismatched hares that reduce their mortality risk. We found that white mismatched hares forage 17-77 min less per day than matched brown hares between 0°C and -10°C, thus lowering their predation risk and increasing survival. We found no effect of mismatch on spring mortality risk, during which mismatch occurred at warmer temperatures, suggesting a potential temperature limit at which the costs of conspicuousness outweigh energetic benefits.


Assuntos
Mimetismo Biológico , Lebres , Animais , Herbivoria , Fenótipo , Estações do Ano , Neve , Sobrevida , Regulação da Temperatura Corporal
7.
Ecology ; 104(4): e3928, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36416056

RESUMO

Foragers must balance the costs and gains inherent in the pursuit of their next meal. Classical functional response formulations describe consumption rates driven by prey density and are naive to predator foraging costs. Here, we integrated foraging costs into functional responses to add mechanism and precision to foundational ideas. Specifically, using a model system with a single predator and two prey, we express a functional response emerging from variable energy and time costs of each predation phase: searching, attacking, or consuming prey. The utility of our model is explored through a focused example where prey can exert variable influence on predator foraging costs through antipredator traits. Dissimilarity between prey in their foraging costs influence the energy gain rate of the predator through optimal prey switching. We found that a small subset of prey antipredator traits and density conditions generated a stabilizing Type III (sigmoidal) functional response-the pattern often thought to typify a generalist predator switching between prey species. The sigmoid functional response occurred for highly profitable prey only when the costly prey (1) were at a high density and (2) their antipredator traits increased energy or time costs following an encounter. We outline testable predictions regarding foraging costs from our model. We provide guidance on how to apply optimal foraging theory to empirical scenarios where predator foraging costs vary due to prey type, predator type, or environmental conditions. Our framework represents a synergy of foundational and contemporary theory across disciplines, facilitating the discovery of shared principles and context-dependent variation across varied predator-prey systems.


Assuntos
Modelos Biológicos , Comportamento Predatório , Animais
8.
Ecol Evol ; 12(9): e9244, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36110871

RESUMO

Changes in foliar elemental niche properties, defined by axes of carbon (C), nitrogen (N), and phosphorus (P) concentrations, reflect how species allocate resources under different environmental conditions. For instance, elemental niches may differ in response to large-scale latitudinal temperature and precipitation regimes that occur between ecoregions and small-scale differences in nutrient dynamics based on species co-occurrences at a community level. At a species level, we compared foliar elemental niche hypervolumes for balsam fir (Abies balsamea (L.) Mill.) and white birch (Betula papyrifera Marshall) between a northern and southern ecoregion. At a community level, we grouped our focal species using plot data into conspecific (i.e., only one focal species is present) and heterospecific groups (i.e., both focal species are present) and compared their foliar elemental concentrations under these community conditions across, within, and between these ecoregions. Between ecoregions at the species and community level, we expected niche hypervolumes to be different and driven by regional biophysical effects on foliar N and P concentrations. At the community level, we expected niche hypervolume displacement and expansion patterns for fir and birch, respectively-patterns that reflect their resource strategy. At the species level, foliar elemental niche hypervolumes between ecoregions differed significantly for fir (F = 14.591, p-value = .001) and birch (F = 75.998, p-value = .001) with higher foliar N and P in the northern ecoregion. At the community level, across ecoregions, the foliar elemental niche hypervolume of birch differed significantly between heterospecific and conspecific groups (F = 4.075, p-value = .021) but not for fir. However, both species displayed niche expansion patterns, indicated by niche hypervolume increases of 35.49% for fir and 68.92% for birch. Within the northern ecoregion, heterospecific conditions elicited niche expansion responses, indicated by niche hypervolume increases for fir of 29.04% and birch of 66.48%. In the southern ecoregion, we observed a contraction response for birch (niche hypervolume decreased by 3.66%) and no changes for fir niche hypervolume. Conspecific niche hypervolume comparisons between ecoregions yielded significant differences for fir and birch (F = 7.581, p-value = .005 and F = 8.038, p-value = .001) as did heterospecific comparisons (F = 6.943, p-value = .004, and F = 68.702, p-value = .001, respectively). Our results suggest species may exhibit biogeographical specific elemental niches-driven by biophysical differences such as those used to describe ecoregion characteristics. We also demonstrate how a species resource strategy may inform niche shift patterns in response to different community settings. Our study highlights how biogeographical differences may influence foliar elemental traits and how this may link to concepts of ecosystem and landscape functionality.

9.
Oecologia ; 200(1-2): 11-22, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35941269

RESUMO

Predators use different spatial tactics to track the prey on the landscape. Three hypotheses describe spatial tactics: prey abundance for prey that are aggregated in space; prey habitat for uniformly distributed prey; and prey catchability for prey that are difficult to catch and kill. The gray wolf (Canis lupus) is a generalist predator that likely employs more than one spatial hunting tactic to match their diverse prey with distinct distributions and behavior that are available. We conducted a study on 17 GPS collared wolves in 6 packs in Riding Mountain National Park, Manitoba, Canada where wolves prey on moose (Alces alces) and elk (Cervus canadensis). We evaluated wolf selection for prey density, habitat selection and catchability on the landscape through within-territory habitat selection analysis. We reveal support for both the prey habitat and prey catchability hypotheses. For moose, their primary prey, wolves employed a mixed habitat and catchability tactic. Wolves used spaces described by the intersection of moose habitat and moose catchability. Wolves selected for the catchability of elk, their secondary prey, but not elk habitat. Counter to our predictions, wolves avoided areas of moose and elk density, likely highlighting the ongoing space race between predator and prey. We illustrate that of the three hypotheses the primary driver was prey catchability, where the interplay of both prey habitat with catchability culminate in predator spatial behaviour in a multiprey system.


Assuntos
Cervos , Lobos , Animais , Ecossistema , Comportamento Predatório , Comportamento Espacial
11.
Oecologia ; 199(1): 27-38, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35396976

RESUMO

Nutritional ecologists aim to predict population or landscape-level effects of food availability, but the tools to extrapolate nutrition from small to large extents are often lacking. The appropriate nutritional ecology currencies should be able to represent consumer responses to food while simultaneously be simple enough to expand such responses to large spatial extents and link them to ecosystem functioning. Ecological stoichiometry (ES), a framework of nutritional ecology, can meet these demands, but it is typically associated with ecosystem ecology and nutrient cycling, and less often used to study wildlife nutrition. Despite the emerging zoogeochemical evidence that animals, and thus their diets, play critical roles in nutrient movement, wildlife nutritional ecology has not fully embraced ES, and ES has not incorporated nutrition in many wildlife studies. Here, we discuss how elemental currencies are "nutritionally, organismally, and ecologically explicit" in the context of terrestrial herbivore nutritional ecology. We add that ES and elemental currencies offer a means to measure resource quality across landscapes and compare nutrient availability among regions. Further, we discuss ES shortcomings and solutions, and list future directions to advance the field. As ecological studies increasingly grow in spatial extent, and attempt to link multiple levels of biological organization, integrating more simple and unifying currencies into nutritional studies, like elements, is necessary for nutritional ecology to predict herbivore occurrences and abundances across regions.


Assuntos
Ecossistema , Herbivoria , Animais , Ecologia , Herbivoria/fisiologia
12.
Evol Appl ; 15(2): 185-202, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35233242

RESUMO

The concept of ecotypes is complex, partly because of its interdisciplinary nature, but the idea is intrinsically valuable for evolutionary biology and applied conservation. The complex nature of ecotypes has spurred some confusion and inconsistencies in the literature, thereby limiting broader theoretical development and practical application. We provide suggestions for how incorporating genetic analyses can ease confusion and help define ecotypes. We approach this by systematically reviewing 112 publications across taxa that simultaneously mention the terms ecotype, conservation and management, to examine the current use of the term in the context of conservation and management. We found that most ecotype studies involve fish, mammals and plants with a focus on habitat use, which at 60% was the most common criterion used for categorization of ecotypes. Only 53% of the studies incorporated genetic analyses, and major discrepancies in available genomic resources among taxa could have contributed to confusion about the role of genetic structure in delineating ecotypes. Our results show that the rapid advances in genetic methods, also for nonmodel organisms, can help clarify the spatiotemporal distribution of adaptive and neutral genetic variation and their relevance to ecotype designations. Genetic analyses can offer empirical support for the ecotype concept and provide a timely measure of evolutionary potential, especially in changing environmental conditions. Genetic variation that is often difficult to detect, including polygenic traits influenced by small contributions from several genes, can be vital for adaptation to rapidly changing environments. Emerging ecotypes may signal speciation in progress, and findings from genome-enabled organisms can help clarify important selective factors driving ecotype development and persistence, and thereby improve preservation of interspecific genetic diversity. Incorporation of genetic analyses in ecotype studies will help connect evolutionary biology and applied conservation, including that of problematic groups such as natural hybrid organisms and urban or anthropogenic ecotypes.

13.
Oecologia ; 198(1): 99-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34984521

RESUMO

Predicting future space use by animals requires models that consider both habitat availability and individual differences in habitat selection. The functional response in habitat selection posits animals adjust their habitat selection to availability, but population-level responses to availability may differ from individual responses. Generalized functional response (GFR) models account for functional responses by including fixed effect interactions between habitat availability and selection. Population-level resource selection functions instead account for individual selection responses to availability with random effects. We compared predictive performance of both approaches using a functional response in elk (Cervus canadensis) selection for mixed forest in response to road proximity, and avoidance of roads in response to mixed forest availability. We also investigated how performance changed when individuals responded differently to availability from the rest of the population. Individual variation in road avoidance decreased performance of both models (random effects: ß = 0.69, 95% CI 0.47, 0.91; GFR: ß = 0.38, 95% CI 0.05, 0.71). Changes in individual road and forest availability affected performance of neither model, suggesting individual responses to availability different from the functional response mediated performance. We also found that overall, both models performed similarly for predicting mixed forest selection (F1, 58 = 0.14, p = 0.71) and road avoidance (F1, 58 = 0.28, p = 0.60). GFR estimates were slightly better, but its larger number of covariates produced greater variance than the random effects model. Given this bias-variance trade-off, we conclude that neither model performs better for future space use predictions.


Assuntos
Cervos , Individualidade , Animais , Ecossistema
14.
Oecologia ; 198(3): 579-591, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743229

RESUMO

Intraspecific feeding choices comprise a large portion of herbivore foraging decisions. Plant resource quality is heterogeneously distributed, affected by nutrient availability and growing conditions. Herbivores navigate landscapes, foraging not only according to food qualities, but also energetic and nutritional demands. We test three non-exclusive foraging hypotheses using the snowshoe hare (Lepus americanus): (1) herbivore feeding choices and body conditions respond to intraspecific plant quality variation; (2) high energetic demands mitigate feeding responses; and (3) feeding responses are inflated when nutritional demands are high. We measured black spruce (Picea mariana) nitrogen, phosphorus and terpene compositions, as indicators of quality, within a snowshoe hare trapping grid and found plant growing conditions to explain spruce quality variation (R2 < 0.36). We then offered two qualities of spruce (H1) from the trapping grid to hares in cafeteria-style experiments and measured their feeding and body condition responses (n = 75). We proxied energetic demands (H2) with ambient temperature and coat insulation (% white coat) and nutritional demands (H3) with the spruce quality (nitrogen and phosphorus content) in home ranges. Hares with the strongest preference for high-quality spruce lost on average 2.2% less weight than hares who ate the least high-quality spruce relative to low-quality spruce. The results supported our energetic predictions as follows: hares in colder temperatures and with less-insulative coats (lower % white) consumed more spruce and were less selective towards high-quality spruce. Collectively, we found variation in plant growing conditions within herbivore home ranges substantial enough to affect herbivore body conditions, but energetic stats mediate plant-herbivore interactions.


Assuntos
Lebres , Picea , Animais , Lebres/fisiologia , Herbivoria , Comportamento de Retorno ao Território Vital , Plantas
15.
Ecol Appl ; 32(1): e02470, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626518

RESUMO

Habitat selection is a fundamental animal behavior that shapes a wide range of ecological processes, including animal movement, nutrient transfer, trophic dynamics and population distribution. Although habitat selection has been a focus of ecological studies for decades, technological, conceptual and methodological advances over the last 20 yr have led to a surge in studies addressing this process. Despite the substantial literature focused on quantifying the habitat-selection patterns of animals, there is a marked lack of guidance on best analytical practices. The conceptual foundations of the most commonly applied modeling frameworks can be confusing even to those well versed in their application. Furthermore, there has yet to be a synthesis of the advances made over the last 20 yr. Therefore, there is a need for both synthesis of the current state of knowledge on habitat selection, and guidance for those seeking to study this process. Here, we provide an approachable overview and synthesis of the literature on habitat-selection analyses (HSAs) conducted using selection functions, which are by far the most applied modeling framework for understanding the habitat-selection process. This review is purposefully non-technical and focused on understanding without heavy mathematical and statistical notation, which can confuse many practitioners. We offer an overview and history of HSAs, describing the tortuous conceptual path to our current understanding. Through this overview, we also aim to address the areas of greatest confusion in the literature. We synthesize the literature outlining the most exciting conceptual advances in the field of habitat-selection modeling, discussing the substantial ecological and evolutionary inference that can be made using contemporary techniques. We aim for this paper to provide clarity for those navigating the complex literature on HSAs while acting as a reference and best practices guide for practitioners.


Assuntos
Comportamento Animal , Ecossistema , Animais , Coleta de Dados , Ecologia/métodos , Movimento
17.
Oecologia ; 197(2): 327-338, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34131817

RESUMO

Home range size of consumers varies with food quality, but the many ways of defining food quality hamper comparisons across studies. Ecological stoichiometry studies the elemental balance of ecological processes and offers a uniquely quantitative, transferrable way to assess food quality using elemental ratios, e.g., carbon (C):nitrogen (N). Here, we test whether snowshoe hares (Lepus americanus) vary their home range size in response to spatial patterns of C:N, C:phosphorus (P), and N:P ratios of two preferred boreal forage species, lowbush blueberry (Vaccinium angustifolium) and red maple (Acer rubrum), in summer months. Boreal forests are N- and P-limited ecosystems and access to N- and P-rich forage is paramount to snowshoe hares' survival. Accordingly, we consider forage with higher C content relative to N and P to be lower quality than forage with lower relative C content. We combine elemental distribution models with summer home range size estimates to test the hypothesis that home range size will be smaller in areas with access to high, homogeneous food quality compared to areas of low, heterogeneous food quality. Our results show snowshoe hares had smaller home ranges in areas where lowbush blueberry foliage quality was higher or more spatially homogenous than in areas of lower, more heterogeneous food quality. By responding to spatial patterns of food quality, consumers may influence community and ecosystem processes by, for example, varying nutrient recycling rates. Our reductionist biogeochemical approach to viewing resources leads us to holistic insights into consumer spatial ecology.


Assuntos
Ecossistema , Lebres , Animais , Herbivoria , Comportamento de Retorno ao Território Vital , Estações do Ano
18.
J Anim Ecol ; 90(1): 4-7, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427327

RESUMO

In Focus: Formica, V., Donald, H., Marti, H., Irgebay, Z., Brodie III, E. Social network position experiences more variable selection than weaponry in wild subpopulations of forked fungus beetles. Journal of Animal Ecology, 90, 168-182, https://doi.org/10.1111/1365-2656.13322. That social network traits can exhibit consistent-individual differences among individuals and confer a fitness benefit or cost is increasingly well-established. However, how selection-natural or sexual-affects those social traits and at what scale remains an open question. In this Special Feature, Formica and colleagues employ a meta-population of forked fungus beetles to test and contrast whether sexual selection on social network traits contrasted to morphological traits occurs at the local (soft) or global (hard) scales. The authors demonstrate that morphological traits are largely under hard directional positive selection, whereas social traits are under soft and variable selection. The findings are compelling and raise interesting discussion of multi-level selection and the evolution of social traits in a meta-population.


Assuntos
Besouros , Animais , Evolução Biológica , Besouros/genética , Fenótipo , Seleção Genética
19.
Ecology ; 102(3): e03268, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326603

RESUMO

In northern climates, spring is a time of rapid environmental change: for migrating terrestrial animals, melting snow facilitates foraging and travel, and newly emergent vegetation provides a valuable nutritional resource. These changes result in selection on the timing of important life-history events such as migration and parturition occurring when high-quality resources are most abundant. We examined the timing of female caribou (Rangifer tarandus, n = 94) migration and parturition in five herds across 7 yr in Newfoundland, Canada, as a function of two measures of environmental change-snowmelt and vegetation green-up. We generated resource selection functions to test whether caribou selected for areas associated with snowmelt and green-up during migration and following calving. We found that caribou migrated approximately 1 wk prior to snowmelt, with the flush of emergent vegetation occurring during the weeks following parturition. The results indicate that caribou "jump" the green wave of emergent forage and do so by tracking the receding edge of melting snow, likely reducing movement and foraging costs related to snow cover. Our research further broadens the ecological scope of resource tracking in animals. We demonstrate that resource tracking extends beyond resources directly related to foraging to those related to movement. We also show that snowmelt provides an environmental cue that may provide a buffer against changing environmental conditions.


Assuntos
Migração Animal , Rena , Animais , Canadá , Feminino , Estações do Ano , Neve
20.
Ecol Evol ; 10(15): 8476-8505, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788995

RESUMO

Population monitoring is a critical part of effective wildlife management, but methods are prone to biases that can hinder our ability to accurately track changes in populations through time. Calf survival plays an important role in ungulate population dynamics and can be monitored using telemetry and herd composition surveys. These methods, however, are susceptible to unrepresentative sampling and violations of the assumption of equal detectability, respectively. Here, we capitalized on 55 herd-wide estimates of woodland caribou (Rangifer tarandus caribou) calf survival in Newfoundland, Canada, using telemetry (n = 1,175 calves) and 249 herd-wide estimates of calf:cow ratios (C:C) using herd composition surveys to investigate these potential biases. These data included 17 herd-wide estimates replicated from both methods concurrently (n = 448 calves and n = 17 surveys) which we used to understand which processes and sampling biases contributed to disagreement between estimates of herd-wide calf survival. We used Cox proportional hazards models to determine whether estimates of calf mortality risk were biased by the date a calf was collared. We also used linear mixed-effects models to determine whether estimates of C:C ratios were biased by survey date and herd size. We found that calves collared later in the calving season had a higher mortality risk and that C:C tended to be higher for surveys conducted later in the autumn. When we used these relationships to modify estimates of herd-wide calf survival derived from telemetry and herd composition surveys concurrently, we found that formerly disparate estimates of woodland caribou calf survival now overlapped (within a 95% confidence interval) in a majority of cases. Our case study highlights the potential of under-appreciated biases to impact our understanding of population dynamics and suggests ways that managers can limit the influence of these biases in the two widely applied methods for estimating herd-wide survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...